Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 44.181
1.
Sci Rep ; 14(1): 8413, 2024 04 10.
Article En | MEDLINE | ID: mdl-38600137

Strain-specific probiotics can present antioxidant activity and reduce damage caused by oxidation. Streptococcus alactolyticus strain FGM (S. alactolyticus strain FGM) isolated from the chicken cecum shows potential probiotic properties which have been previously demonstrated. However, the antioxidant properties of S. alactolyticus strain FGM remain unknown. In this view, cell-free supernatant (CFS), intact cells (IC) and intracellular extracts (CFE) of strain FGM and 3 strains of Lactobacillus (LAB) were prepared, and their scavenging capacities against DPPH, hydroxyl radicals and linoleic acid peroxidation inhibitory were compared in this study. The effects of strain FGM cell-free supernatant (FCFS) on NO production, activity of SOD and GSH-Px in RAW264.7 cells and LPS-induced RAW264.7 cells were analyzed. The metabolites in the supernatant were quantitated by N300 Quantitative Metabolome. It was shown that the physicochemical characteristics of CFS to scavenge DPPH, hydroxyl radicals, and linoleic acid peroxidation inhibitory were significantly stronger than that of IC and CFE in the strain FGM (P < 0.05), respectively 87.12% ± 1.62, 45.03% ± 1.27, 15.63% ± 1.34. FCFS had a promotional effect on RAW264.7 cells, and significantly elevated SOD and GSH-Px activities in RAW264.7 cells. 25 µL FCFS significantly promoted the proliferation of RAW264.7 cells induced by LPS, increased the activities of SOD and GSH-PX, and decreased the release of NO. Furthermore, among the differential metabolites of FCFS quantified by N300, 12 metabolites were significantly up-regulated, including lactic acid, indole lactic acid, linoleic acid, pyruvic acid etc., many of which are known with antioxidant properties. In conclusion, FCFS had good antioxidant properties and activity, which can be attributed to metabolites produced from strain FGM fermentation. It was further confirmed that S. alactolyticus strain FGM and its postbiotic have potential probiotic properties and bright application prospects in livestock and poultry breeding.


Antioxidants , Probiotics , Streptococcus , Antioxidants/pharmacology , Antioxidants/metabolism , Linoleic Acid , Lipopolysaccharides , Probiotics/metabolism , Hydroxyl Radical , Superoxide Dismutase , Lactic Acid/metabolism
2.
BMC Vet Res ; 20(1): 143, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38622626

Polystyrene nanoplastic (PS-NPs) and Engine oil (EO) pose multiple ecotoxic effects with increasing threat to fish ecosystems. The current study investigated the toxicity of 15 days exposure to PS-NPs and / or EO to explore their combined synergistic effects on Nile tilapia, Oreochromis niloticus (O. niloticus). Hematobiochemical parameters, proinflammatory cytokines, and oxidative stress biomarkers as well as histological alterations were evaluated. The experimental design contained 120 acclimated Nile tilapia distributed into four groups, control, PS-NPs (5 mg/L), EO (1%) and their combination (PS-NPs + EO). After 15-days of exposure, blood and tissue samples were collected from all fish experimental groups. Results indicated that Nile tilapia exposed to PS-NPs and / or EO revealed a significant decrease in almost all the measured hematological parameters in comparison to the control, whereas WBCs and lymphocyte counts were significantly increased in the combined group only. Results clarified that the combined PS-NPs + EO group showed the maximum decrease in RBCs, Hb, MCH and MCHC, and showed the maximum significant rise in interleukin-1ß (IL-1ß), and interleukin-6 (IL-6) in comparison to all other exposed groups. Meanwhile, total antioxidant capacity (TAC) showed a significant (p < 0.05) decline only in the combination group, whereas reduced glutathione (GSH) showed a significant decline in all exposed groups in comparison to the control. Both malondialdehyde (MDA) and aspartate aminotransferase (AST) showed a significant elevation only in the combination group. Uric acid showed the maximum elevation in the combination group than all other groups, whereas creatinine showed significant elevation in the EO and combination group when compared to the control. Furthermore, the present experiment proved that exposure to these toxicants either individually or in combination is accompanied by pronounced histomorpholgical damage characterized by severe necrosis and hemorrhage of the vital organs of Nile tilapia, additionally extensively inflammatory conditions with leucocytes infiltration. We concluded that combination exposure to both PS-NPs and EO caused severe anemia, extreme inflammatory response, oxidative stress, and lipid peroxidation effects, thus they can synergize with each other to intensify toxicity in fish.


Cichlids , Microplastics , Animals , Microplastics/metabolism , Microplastics/pharmacology , Polystyrenes/toxicity , Polystyrenes/metabolism , Ecosystem , Liver/metabolism , Antioxidants/metabolism , Oxidative Stress , Interleukin-6/metabolism
3.
Mol Neurodegener ; 19(1): 36, 2024 Apr 19.
Article En | MEDLINE | ID: mdl-38641847

The unprecedented pandemic of COVID-19 swept millions of lives in a short period, yet its menace continues among its survivors in the form of post-COVID syndrome. An exponentially growing number of COVID-19 survivors suffer from cognitive impairment, with compelling evidence of a trajectory of accelerated aging and neurodegeneration. The novel and enigmatic nature of this yet-to-unfold pathology demands extensive research seeking answers for both the molecular underpinnings and potential therapeutic targets. Ferroptosis, an iron-dependent cell death, is a strongly proposed underlying mechanism in post-COVID-19 aging and neurodegeneration discourse. COVID-19 incites neuroinflammation, iron dysregulation, reactive oxygen species (ROS) accumulation, antioxidant system repression, renin-angiotensin system (RAS) disruption, and clock gene alteration. These events pave the way for ferroptosis, which shows its signature in COVID-19, premature aging, and neurodegenerative disorders. In the search for a treatment, melatonin shines as a promising ferroptosis inhibitor with its repeatedly reported safety and tolerability. According to various studies, melatonin has proven efficacy in attenuating the severity of certain COVID-19 manifestations, validating its reputation as an anti-viral compound. Melatonin has well-documented anti-aging properties and combating neurodegenerative-related pathologies. Melatonin can block the leading events of ferroptosis since it is an efficient anti-inflammatory, iron chelator, antioxidant, angiotensin II antagonist, and clock gene regulator. Therefore, we propose ferroptosis as the culprit behind the post-COVID-19 trajectory of aging and neurodegeneration and melatonin, a well-fitting ferroptosis inhibitor, as a potential treatment.


COVID-19 , Ferroptosis , Melatonin , Humans , Melatonin/pharmacology , Melatonin/therapeutic use , Melatonin/metabolism , Antioxidants/metabolism , Brain/metabolism , Aging , Iron/metabolism
4.
BMC Biol ; 22(1): 91, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38654271

BACKGROUND: Elephant seals exhibit extreme hypoxemic tolerance derived from repetitive hypoxia/reoxygenation episodes they experience during diving bouts. Real-time assessment of the molecular changes underlying protection against hypoxic injury in seals remains restricted by their at-sea inaccessibility. Hence, we developed a proliferative arterial endothelial cell culture model from elephant seals and used RNA-seq, functional assays, and confocal microscopy to assess the molecular response to prolonged hypoxia. RESULTS: Seal and human endothelial cells exposed to 1% O2 for up to 6 h respond differently to acute and prolonged hypoxia. Seal cells decouple stabilization of the hypoxia-sensitive transcriptional regulator HIF-1α from angiogenic signaling. Rapid upregulation of genes involved in glutathione (GSH) metabolism supports the maintenance of GSH pools, and intracellular succinate increases in seal but not human cells. High maximal and spare respiratory capacity in seal cells after hypoxia exposure occurs in concert with increasing mitochondrial branch length and independent from major changes in extracellular acidification rate, suggesting that seal cells recover oxidative metabolism without significant glycolytic dependency after hypoxia exposure. CONCLUSIONS: We found that the glutathione antioxidant system is upregulated in seal endothelial cells during hypoxia, while this system remains static in comparable human cells. Furthermore, we found that in contrast to human cells, hypoxia exposure rapidly activates HIF-1 in seal cells, but this response is decoupled from the canonical angiogenesis pathway. These results highlight the unique mechanisms that confer extraordinary tolerance to limited oxygen availability in a champion diving mammal.


Antioxidants , Endothelial Cells , Seals, Earless , Signal Transduction , Up-Regulation , Animals , Seals, Earless/physiology , Seals, Earless/metabolism , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Antioxidants/metabolism , Humans , Hypoxia/metabolism , Cell Hypoxia , Neovascularization, Physiologic/drug effects , Neovascularization, Physiologic/physiology , Cells, Cultured , Glutathione/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics
5.
PeerJ ; 12: e17231, 2024.
Article En | MEDLINE | ID: mdl-38646477

Ageratina adenophora is an invasive weed species found in many countries. Methods to control the spread of this weed have been largely unsuccessful. Soil pH is the most important soil factor affecting the availability of nutrients for plant and impacting its growth. Understanding the mechanisms of the influence of soil pH on the growth of A. adenophora may help to develop effective control measures. In this study, we artificially changed the soil pH in pot experiments for A. adenophora. We studied the effects of acidic (pH 5.5), weakly acidic (pH 6.5), neutral (pH 7.2), and alkaline (pH 9.0) soils on the growth, availability of soil nutrients, activity of antioxidant enzymes, levels of redox markers in the leaves, and the structure and diversity of the rhizosphere microbiome. Soil with a pH 7.2 had a higher (47.8%) below-ground height versus soils of pH 5.5 at day 10; plant had a higher (11.3%) above-ground height in pH 7.2 soils than pH 9.0 soils at day 90; no differences in the fresh and dry weights of its above- and belowground parts, plant heights, and root lengths were observed in plants growing in acid, alkaline, or neutral pH soil were observed at day 180. Correspondingly, the antioxidant enzymes SOD (superoxide dismutase), POD (peroxidase), CAT (catalase) and redox markers GSH (glutathione) and MDA (malondialdehyde) were measured in the leaves. Significant differences existed in the activities of CAT and the levels of GSH between those growing in acidic and alkaline soils and those in neutral pH soil at day 90; however, only lower (36.8%) CAT activities in those grown at pH 5.5 than those grown at pH 7.2 were found at day 180. Similarly, significant differences in available P (16.89 vs 3.04 mg Kg-1) and total K (3.67 vs 0.96 mg Kg-1), total P (0.37 vs 0.25 g Kg-1) and total N (0.45 vs 1.09 g Kg-1) concentrations were found between the rhizosphere soils of A. adenophora grown at pH 9.0 and 7.2 at day 90; no such differences were seen at day 180. High throughput analyses of the 16S rRNA and ITS fragments showed that the rhizosphere microbiome diversity and composition under different soil pH conditions changed over 180 days. The rhizosphere microbiomes differed in diversity, phylum, and generic composition and population interactions under acid and alkaline conditions versus those grown in neutral soils. Soil pH had a greater impact on the diversity and composition of the prokaryotic rhizosphere communities than those of the fungal communities. A. adenophora responded successfully to pH stress by changing the diversity and composition of the rhizosphere microbiome to maintain a balanced nutrient supply to support its normal growth. The unusual pH tolerance of A. adenophora may be one crucial reason for its successful invasion. Our results suggest that attempts use soil pH to control its invasion by changing the soil pH (for example, using lime) will fail.


Ageratina , Microbiota , Rhizosphere , Soil Microbiology , Soil , Hydrogen-Ion Concentration , Microbiota/physiology , Soil/chemistry , Ageratina/chemistry , Plant Leaves/microbiology , Plant Leaves/chemistry , Plant Weeds/chemistry , Plant Weeds/growth & development , Plant Roots/microbiology , Antioxidants/metabolism , Antioxidants/analysis
6.
Front Immunol ; 15: 1319698, 2024.
Article En | MEDLINE | ID: mdl-38646543

This study explored the impacts of supplementation of different levels of coated methionine (Met) in a high-plant protein diet on growth, blood biochemistry, antioxidant capacity, digestive enzymes activity and expression of genes related to TOR signaling pathway in gibel carp (Carassius auratus gibeilo). A high-plant protein diet was formulated and used as a basal diet and supplemented with five different levels of coated Met at 0.15, 0.30, 0.45, 0.60 and 0.75%, corresponding to final analyzed Met levels of 0.34, 0.49, 0.64, 0.76, 0.92 and 1.06%. Three replicate groups of fish (initial mean weight, 11.37 ± 0.02 g) (20 fish per replicate) were fed the test diets over a 10-week feeding period. The results indicated that with the increase of coated Met level, the final weight, weight gain (WG) and specific growth rate initially boosted and then suppressed, peaking at 0.76% Met level (P< 0.05). Increasing dietary Met level led to significantly increased muscle crude protein content (P< 0.05) and reduced serum alanine aminotransferase activity (P< 0.05). Using appropriate dietary Met level led to reduced malondialdehyde concentration in hepatopancreas (P< 0.05), improved superoxide dismutase activity (P< 0.05), and enhanced intestinal amylase and protease activities (P< 0.05). The expression levels of genes associated with muscle protein synthesis such as insulin-like growth factor-1, protein kinase B, target of rapamycin and eukaryotic initiation factor 4E binding protein-1 mRNA were significantly regulated, peaking at Met level of 0.76% (P< 0.05). In conclusion, supplementing optimal level of coated Met improved on fish growth, antioxidant capacity, and the expression of TOR pathway related genes in muscle. The optimal dietary Met level was determined to be 0.71% of the diet based on quadratic regression analysis of WG.


Animal Feed , Antioxidants , Dietary Supplements , Methionine , Signal Transduction , TOR Serine-Threonine Kinases , Animals , Methionine/administration & dosage , TOR Serine-Threonine Kinases/metabolism , Antioxidants/metabolism , Animal Feed/analysis , Goldfish/growth & development , Goldfish/genetics , Goldfish/metabolism , Fish Proteins/genetics , Fish Proteins/metabolism , Gene Expression Regulation/drug effects
7.
PeerJ ; 12: e17219, 2024.
Article En | MEDLINE | ID: mdl-38650645

Abiotic stress caused by soil salinization remains a major global challenge that threatens and severely impacts crop growth, causing yield reduction worldwide. In this study, we aim to investigate the damage of salt stress on the leaf physiology of two varieties of rice (Huanghuazhan, HHZ, and Xiangliangyou900, XLY900) and the regulatory mechanism of Hemin to maintain seedling growth under the imposed stress. Rice leaves were sprayed with 5.0 µmol·L-1 Hemin or 25.0 µmol·L-1 ZnPP (Zinc protoporphyrin IX) at the three leaf and one heart stage, followed by an imposed salt stress treatment regime (50.0 mmol·L-1 sodium chloride (NaCl)). The findings revealed that NaCl stress increased antioxidant enzymes activities and decreased the content of nonenzymatic antioxidants such as ascorbate (AsA) and glutathione (GSH). Furthermore, the content of osmoregulatory substances like soluble proteins and proline was raised. Moreover, salt stress increased reactive oxygen species (ROS) content in the leaves of the two varieties. However, spraying with Hemin increased the activities of antioxidants such as superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) and accelerated AsA-GSH cycling to remove excess ROS. In summary, Hemin reduced the effect of salt stress on the physiological characteristics of rice leaves due to improved antioxidant defense mechanisms that impeded lipid peroxidation. Thus, Hemin was demonstrated to lessen the damage caused by salt stress.


Antioxidants , Glutathione , Hemin , Oryza , Salt Stress , Oryza/drug effects , Oryza/metabolism , Oryza/growth & development , Hemin/pharmacology , Antioxidants/metabolism , Salt Stress/drug effects , Glutathione/metabolism , Reactive Oxygen Species/metabolism , Ascorbic Acid/metabolism , Plant Leaves/drug effects , Plant Leaves/metabolism , Sodium Chloride/pharmacology , Catalase/metabolism , Superoxide Dismutase/metabolism , Seedlings/drug effects , Seedlings/metabolism
8.
Physiol Rep ; 12(8): e16026, 2024 Apr.
Article En | MEDLINE | ID: mdl-38653584

High sodium intake is decisive in the incidence increase and prevalence of hypertension, which has an impact on skeletal muscle functionality. Diazoxide is an antihypertensive agent that inhibits insulin secretion and is an opener of KATP channels (adosine triphosphate sensitive potasium channels). For this reason, it is hypothesized that moderate-intensity exercise and diazoxide improve skeletal muscle function by reducing the oxidants in hypertensive rats. Male Wistar rats were assigned into eight groups: control (CTRL), diazoxide (DZX), exercise (EX), exercise + diazoxide (EX + DZX), hypertension (HTN), hypertension + diazoxide (HTN + DZX), hypertension + exercise (HTN + EX), and hypertension + exercise + diazoxide (HTN + EX + DZX). To induce hypertension, the rats received 8% NaCl dissolved in water orally for 30 days; in the following 8 weeks, 4% NaCl was supplied to maintain the pathology. The treatment with physical exercise of moderate intensity lasted 8 weeks. The administration dose of diazoxide was 35 mg/kg intraperitoneally for 14 days. Tension recording was performed on the extensor digitorum longus and the soleus muscle. Muscle homogenates were used to measure oxidants using fluorescent probe and the activity of antioxidant systems. Diazoxide and moderate-intensity exercise reduced oxidants and increased antioxidant defenses.


Antioxidants , Diazoxide , Hypertension , Muscle, Skeletal , Physical Conditioning, Animal , Rats, Wistar , Animals , Diazoxide/pharmacology , Male , Muscle, Skeletal/metabolism , Muscle, Skeletal/drug effects , Hypertension/metabolism , Hypertension/physiopathology , Physical Conditioning, Animal/physiology , Rats , Antioxidants/metabolism , Antioxidants/pharmacology , Oxidative Stress/drug effects , Oxidants/metabolism
9.
Cells ; 13(8)2024 Apr 15.
Article En | MEDLINE | ID: mdl-38667301

Phytohormones, particularly cytokinin trans-zeatin (tZ), were studied for their impact on the green alga Desmodesmus armatus under cadmium (Cd) stress, focusing on growth, metal accumulation, and stress response mechanisms. Using atomic absorption spectroscopy for the Cd level and high-performance liquid chromatography for photosynthetic pigments and phytochelatins, along with spectrophotometry for antioxidants and liquid chromatography-mass spectrometry for phytohormones, we found that tZ enhances Cd uptake in D. armatus, potentially improving phycoremediation of aquatic environments. Cytokinin mitigates Cd toxicity by regulating internal phytohormone levels and activating metal tolerance pathways, increasing phytochelatin synthase activity and phytochelatin accumulation essential for Cd sequestration. Treatment with tZ and Cd also resulted in increased cell proliferation, photosynthetic pigment and antioxidant levels, and antioxidant enzyme activities, reducing oxidative stress. This suggests that cytokinin-mediated mechanisms in D. armatus enhance its capacity for Cd uptake and tolerance, offering promising avenues for more effective aquatic phycoremediation techniques.


Antioxidants , Cadmium , Chlorophyta , Zeatin , Cadmium/toxicity , Zeatin/metabolism , Zeatin/pharmacology , Antioxidants/metabolism , Antioxidants/pharmacology , Chlorophyta/drug effects , Chlorophyta/metabolism , Oxidative Stress/drug effects , Photosynthesis/drug effects , Phytochelatins/metabolism , Plant Growth Regulators/pharmacology , Plant Growth Regulators/metabolism
10.
Mar Drugs ; 22(4)2024 Mar 28.
Article En | MEDLINE | ID: mdl-38667767

Chitosan (CH) shows great potential as an immunostimulatory feed additive in aquaculture. This study evaluates the effects of varying dietary CH levels on the growth, immunity, intestinal morphology, and antioxidant status of Nile tilapia (Oreochromis niloticus) reared in a biofloc system. Tilapia fingerlings (mean weight 13.54 ± 0.05 g) were fed diets supplemented with 0 (CH0), 5 (CH5), 10 (CH10), 20 (CH20), and 40 (CH40) mL·kg-1 of CH for 8 weeks. Parameters were assessed after 4 and 8 weeks. Their final weight was not affected by CH supplementation, but CH at 10 mL·kg-1 significantly improved weight gain (WG) and specific growth rate (SGR) compared to the control (p < 0.05) at 8 weeks. Skin mucus lysozyme and peroxidase activities were lower in the chitosan-treated groups at weeks 4 and 8. Intestinal villi length and width were enhanced by 10 and 20 mL·kg-1 CH compared to the control. However, 40 mL·kg-1 CH caused detrimental impacts on the villi and muscular layer. CH supplementation, especially 5-10 mL·kg-1, increased liver and intestinal expressions of interleukin 1 (IL-1), interleukin 8 (IL-8), LPS-binding protein (LBP), glutathione reductase (GSR), glutathione peroxidase (GPX), and glutathione S-transferase (GST-α) compared to the control group. Overall, dietary CH at 10 mL·kg-1 can effectively promote growth, intestinal morphology, innate immunity, and antioxidant capacity in Nile tilapia fingerlings reared in biofloc systems.


Animal Feed , Aquaculture , Chitosan , Cichlids , Intestines , Animals , Chitosan/pharmacology , Cichlids/growth & development , Cichlids/immunology , Cichlids/metabolism , Intestines/drug effects , Aquaculture/methods , Dietary Supplements , Antioxidants/pharmacology , Antioxidants/metabolism , Gene Expression/drug effects
11.
Toxins (Basel) ; 16(4)2024 Apr 07.
Article En | MEDLINE | ID: mdl-38668604

Fumonisin B1, T-2 toxin, and deoxynivalenol are frequently detected in feed materials. The mycotoxins induce free radical formation and, thereby, lipid peroxidation. The effects of mycotoxin exposure at the EU recommended limit (T-2/HT-2 toxin: 0.25 mg/kg; DON = 3AcDON/15-AScDON: 5 mg/kg; fumonisin B1: 20 mg/kg) and double dose (T-2/HT-2 toxin: 0.5 mg/kg, DON/3-AcDON/15-AcDON: 10 mg, and FB1: 40 mg/kg feed) were investigated during short-term (3 days) per os exposure in the liver of laying hens. On day 1 higher while on day 3 lower MDA concentrations were found in the low-dose group compared to the control. Fatty acid composition also changed: the proportion of monounsaturated fatty acids increased (p < 0.05) and the proportion of polyunsaturated fatty acids decreased by day 3. These alterations resulted in a decrease in the index of unsaturation and average fatty acid chain length. Histopathological alterations suggested that the incidence and severity of liver lesions were higher in the mycotoxin-treated laying hens, and the symptoms correlated with the fatty acid profile of total phospholipids. Overall, the findings revealed that mycotoxin exposure, even at the EU-recommended limits, induced lipid peroxidation in the liver, which led to changes in fatty acid composition, matched with tissue damage.


Chickens , Fatty Acids , Fusarium , Lipid Peroxidation , Liver , Mycotoxins , Animals , Lipid Peroxidation/drug effects , Liver/drug effects , Liver/pathology , Liver/metabolism , Female , Mycotoxins/toxicity , Animal Feed/analysis , Antioxidants/metabolism
12.
Mol Biol Rep ; 51(1): 543, 2024 Apr 20.
Article En | MEDLINE | ID: mdl-38642191

Heavy metal stress is a major problem in present scenario and the consequences are well known. The agroecosystems are heavily affected by the heavy metal stress and the question arises on the sustainability of the agricultural products. Heavy metals inhibit the process to influence the reactive oxygen species production. When abundantly present copper metal ion has toxic effects which is mitigated by the exogenous application of Si. The role of silicon is to enhance physical parameters as well as gas exchange parameters. Si is likely to increase antioxidant enzymes in response to copper stress which can relocate toxic metals at subcellular level and remove heavy metals from the cell. Silicon regulates phytohormones when excess copper is present. Rate of photosynthesis and mineral absorption is increased in response to metal stress. Silicon manages enzymatic and non-enzymatic activities to balance metal stress condition. Cu transport by the plasma membrane is controlled by a family of proteins called copper transporter present at cell surface. Plants maintain balance in absorption, use and storage for proper copper ion homeostasis. Copper chaperones play vital role in copper ion movement within cells. Prior to that metallochaperones control Cu levels. The genes responsible in copper stress mitigation are discovered in various plant species and their function are decoded. However, detailed molecular mechanism is yet to be studied. This review discusses about the crucial mechanisms of Si-mediated alleviation of copper stress, the role of copper binding proteins in copper homeostasis. Moreover, it also provides a brief information on the genes, their function and regulation of their expression in relevance to Cu abundance in different plant species which will be beneficial for further understanding of the role of silicon in stabilization of copper stress.


Copper , Metals, Heavy , Copper/metabolism , Silicon/pharmacology , Silicon/metabolism , Metals, Heavy/metabolism , Antioxidants/metabolism , Plants/metabolism , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Dietary Supplements
13.
AAPS PharmSciTech ; 25(4): 72, 2024 Apr 04.
Article En | MEDLINE | ID: mdl-38575745

Atopic dermatitis is a skin condition characterized by lichenification (thickening and increased skin marking), eczematous lesions, dry skin, itching, and pruritus. Eugenol is an aromatic polyphenolic compound that has attracted the attention of researchers due to its anti-inflammatory, anti-oxidant, and anti-cancer properties. The primary goal of the present study was to develop and evaluate eugenol-loaded transethosomes for the treatment of AD. Eugenol-loaded transethosomes were formulated using the ethanol injection method and subsequently subjected to particle size analysis, zeta potential, entrapment efficiency, deformability index, and HRTEM analysis. Transethosomal gel was prepared by direct-dispersion method by using Carbopol 940®. Results showed transethosomes to be lipid bilayer structures with acceptable size, and high entrapment efficiency. Transethosomal formulation showed shear-thinning behavior. Eugenol-loaded transethosomal gel was significantly able to enhance the retention of the drug in the skin. Transethosomal gel was significantly able to reduce Ear thickness, DLC, TLC, and IL-6 levels in mice model of AD. These results indicate that the eugenol-loaded transethosomal gel could be a promising carrier for the topical administration of eugenol for the treatment of AD.


Dermatitis, Atopic , Eugenol , Animals , Mice , Eugenol/pharmacology , Skin Absorption , Administration, Cutaneous , Dermatitis, Atopic/drug therapy , Drug Carriers/chemistry , Skin/metabolism , Antioxidants/metabolism
14.
Biochemistry (Mosc) ; 89(Suppl 1): S57-S70, 2024 Jan.
Article En | MEDLINE | ID: mdl-38621744

Neurodegenerative diseases are a growing global health problem with enormous consequences for individuals and society. The most common neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases, can be caused by both genetic factors (mutations) and epigenetic changes caused by the environment, in particular, oxidative stress. One of the factors contributing to the development of oxidative stress that has an important effect on the nervous system is vitamin K, which is involved in redox processes. However, its role in cells is ambiguous: accumulation of high concentrations of vitamin K increases the content of reactive oxygen species increases, while small amounts of vitamin K have a protective effect and activate the antioxidant defense systems. The main function of vitamin K is its involvement in the gamma carboxylation of the so-called Gla proteins. Some Gla proteins are expressed in the nervous system and participate in its development. Vitamin K deficiency can lead to a decrease or loss of function of Gla proteins in the nervous system. It is assumed that the level of vitamin K in the body is associated with specific changes involved in the development of dementia and cognitive abilities. Vitamin K also influences the sphingolipid profile in the brain, which also affects cognitive function. The role of vitamin K in the regulation of biochemical processes at the cellular and whole-organism levels has been studied insufficiently. Further research can lead to the discovery of new targets for vitamin K and development of personalized diets and therapies.


Neurodegenerative Diseases , Vitamin K , Humans , Vitamin K/metabolism , Neurodegenerative Diseases/metabolism , Antioxidants/metabolism , Oxidative Stress , Reactive Oxygen Species/metabolism
15.
Mol Biol Rep ; 51(1): 516, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38622329

BACKGROUND: Resveratrol has received much attention due to its beneficial effects including antioxidant activity. The purpose of this study was to investigate the therapeutic effects of resveratrol treatment on oxidative stress and insulin resistance in the skeletal muscle of high-fat diet (HFD)-fed animals. METHODS AND RESULTS: A total of 30 six-week-old C57BL/6J mice were randomly allocated to three groups (10 animals in each group): The control group in which mice were fed a normal chow diet (NCD); the HFD group in which mice were fed an HFD for 26 weeks; and the HFD-resveratrol group in which HFD was replaced by a resveratrol supplemented-HFD (400 mg/kg diet) after 10 weeks of HFD feeding. At the end of this period, gastrocnemius muscle samples were examined to determine insulin resistance and the oxidative status in the presence of HFD and resveratrol. Resveratrol supplementation in HFD-fed mice reduced body and adipose tissue weight, improved insulin sensitivity, and decreased oxidative stress as indicated by lower malonaldehyde (MDA) levels and higher total antioxidant capacity. The supplement also increased the expression and activity of antioxidative enzymes in gastrocnemius muscle and modulated Nrf2 and Keap1 expression levels. CONCLUSIONS: These results suggest that resveratrol is effective in improving the antioxidant defense system of the skeletal muscle in HFD-fed mice, indicating its therapeutic potential to combat diseases associated with insulin resistance and oxidative stress.


Antioxidants , Insulin Resistance , Mice , Animals , Antioxidants/metabolism , Resveratrol/pharmacology , Resveratrol/metabolism , Insulin Resistance/physiology , Diet, High-Fat/adverse effects , NF-E2-Related Factor 2/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Mice, Inbred C57BL , Muscle, Skeletal/metabolism , Signal Transduction , Insulin/metabolism
16.
Physiol Plant ; 176(2): e14294, 2024.
Article En | MEDLINE | ID: mdl-38634335

In our comprehensive meta-analysis, we initially collected 177 publications focusing on the impact of melatonin on wheat. After meticulous screening, 40 published studies were selected, encompassing 558 observations for antioxidant enzymes, 312 for reactive oxygen species (ROS), and 92 for soluble biomolecules (soluble sugar and protein). This analysis revealed significant heterogeneity across studies (I2 > 99% for enzymes, ROS, and soluble biomolecules) and notable publication bias, indicating the complexity and variability in the research field. Melatonin application generally increased antioxidant enzyme activities [superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX)] in wheat, particularly under stress conditions, such as high temperature and heavy-metal exposure. Compared to control, melatonin application increased SOD, POD, CAT, and APX activities by 29.5, 16.96, 35.98, and 171.64%, respectively. Moreover, oxidative stress markers like hydrogen peroxide (H2O2), superoxide anion (O2), and malondialdehyde (MDA) decreased with melatonin by 23.73, 13.64, and 21.91%, respectively, suggesting a reduction in oxidative stress. The analysis also highlighted melatonin's role in improving carbohydrate metabolism and antioxidant defenses. Melatonin showed an overall increase of 12.77% in soluble sugar content, and 22.76% in glutathione peroxidase (GPX) activity compared to the control. However, the effects varied across different wheat varieties, environmental conditions, and application methods. Our study also uncovered complex relationships between antioxidant enzyme activities and H2O2 levels, indicating a nuanced regulatory role of melatonin in oxidative stress responses. Our meta-analysis demonstrates the significant role of melatonin in increasing wheat resilience to abiotic stressors, potentially through its regulatory impact on antioxidant defense systems and stress response.


Antioxidants , Melatonin , Antioxidants/metabolism , Melatonin/pharmacology , Reactive Oxygen Species/metabolism , Triticum/metabolism , Hydrogen Peroxide/metabolism , Catalase/metabolism , Superoxide Dismutase/metabolism , Peroxidases/metabolism , Peroxidase/metabolism , Oxidative Stress , Sugars/metabolism , Malondialdehyde/metabolism
17.
Biochem Biophys Res Commun ; 710: 149877, 2024 May 28.
Article En | MEDLINE | ID: mdl-38581956

OxyR, a LysR family transcriptional regulator, plays vital roles in bacterial oxidative stress response. In this study, we found that the deletion of oxyR not only inhibited the antioxidant capacity of S. marcescens FS14, but also decreased the production of prodigiosin. Further study revealed that OxyR activated the prodigiosin biosynthesis at the transcriptional level. Complementary results showed that not only the wild-type OxyR but also the reduced form OxyRC199S could activate the prodigiosin biosynthesis. We further demonstrated that reduced form of wild type OxyR could bind to the promoter of pig gene cluster, and identified the binding sites which is different from oxidized OxyR binding sites in E. coli. Our results demonstrated that OxyR in FS14 uses oxidized form to regulate the expression of the antioxidant related genes and utilizes reduced form to activate prodigiosin production. Further in silico analysis suggested that the activation of prodigiosin biosynthesis by reduced OxyR should be general in S. marcesencs. To our knowledge, this is the first report to show that OxyR uses the reduced form to activate the gene's expression, therefore, our results provide a novel regulation mechanism of OxyR.


Prodigiosin , Serratia marcescens , Animals , Swine , Serratia marcescens/genetics , Serratia marcescens/metabolism , Escherichia coli/metabolism , Antioxidants/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
18.
Food Chem Toxicol ; 187: 114637, 2024 May.
Article En | MEDLINE | ID: mdl-38582345

Diclofenac (DF)-induced acute kidney injury (AKI) is characterized by glomerular dysfunction and acute tubular necrosis. Due to limited treatment approaches, effective and safe drug therapy to protect against such AKI is still needed. Diacetylrhein (DAR), an anthraquinone derivative, has different antioxidant and anti-inflammatory properties. Therefore, the aim of the current study was to investigate the renoprotective effect of DAR on DF-induced AKI while elucidating the potential underlying mechanism. Our results showed that DAR (50 and 100 mg/kg) markedly abrogated DF-induced kidney dysfunction decreasing SCr, BUN, serum NGAL, and serum KIM1 levels. Moreover, DAR treatment remarkably maintained renal redox balance and reduced the levels of pro-inflammatory biomarkers in the kidney. Mechanistically, DAR boosted Nrf2/HO-1 antioxidant and anti-inflammatory response in the kidney while suppressing renal TLR4/NF-κB and NLRP3/caspase-1 inflammatory signaling pathways. In addition, DAR markedly inhibited renal pyroptosis via targeting of GSDMD activation. Collectively, this study confirmed that the interplay between Nrf2/HO-1 and TLR4/NF-κB/NLRP3/Caspase-1 signaling pathways and pyroptotic cell death mediates DF-induced AKI and reported that DAR has a dose-dependent renoprotective effect on DF-induced AKI in rats. This effect is due to powerful antioxidant, anti-inflammatory, and anti-pyroptotic activities that could provide a promising treatment approach to protect against DF-induced AKI.


Acute Kidney Injury , NF-kappa B , Rats , Animals , NF-kappa B/metabolism , Diclofenac/toxicity , NF-E2-Related Factor 2/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Antioxidants/metabolism , Toll-Like Receptor 4/metabolism , Signal Transduction , Acute Kidney Injury/chemically induced , Acute Kidney Injury/prevention & control , Acute Kidney Injury/drug therapy , Kidney , Anti-Inflammatory Agents/therapeutic use , Caspases/metabolism
19.
J Plant Physiol ; 296: 154237, 2024 May.
Article En | MEDLINE | ID: mdl-38583194

Selenium (Se) is an essential micronutrient for both human and animals. Plants serve as the primary source of Se in the food chain. Se concentration and availability in plants is influenced by soil properties and environmental conditions. Optimal Se levels promote plant growth and enhance stress tolerance, while excessive Se concentration can result in toxicity. Se enhances plants ROS scavenging ability by promoting antioxidant compound synthesis. The ability of Se to maintain redox balance depends upon ROS compounds, stress conditions and Se application rate. Furthermore, Se-dependent antioxidant compound synthesis is critically reliant on plant macro and micro nutritional status. As these nutrients are fundamental for different co-factors and amino acid synthesis. Additionally, phytohormones also interact with Se to promote plant growth. Hence, utilization of phytohormones and modified crop nutrition can improve Se-dependent crop growth and plant stress tolerance. This review aims to explore the assimilation of Se into plant proteins, its intricate effect on plant redox status, and the specific interactions between Se and phytohormones. Furthermore, we highlight the proposed physiological and genetic mechanisms underlying Se-mediated phytohormone-dependent plant growth modulation and identified research opportunities that could contribute to sustainable agricultural production in the future.


Antioxidants , Selenium , Animals , Humans , Antioxidants/metabolism , Selenium/metabolism , Plant Growth Regulators/metabolism , Reactive Oxygen Species/metabolism , Plants/metabolism
20.
Stress ; 27(1): 2319803, 2024 Jan.
Article En | MEDLINE | ID: mdl-38628154

Heat stress has been ranked as a critical environmental issue confronting chicken farmers worldwide because of its detrimental effect on the growth, performance and health of the birds. This study evaluated the effects of early-age thermal manipulation (EATC) and supplemental antioxidants on the physiological responses of broilers in a hot tropical environment. A total of 300 day-old Ross broiler chicks were allocated to five thermal and dietary treatments, having 5 replicates of twelve birds each. The treatments were: chicks reared using the conventional method (CC), chicks exposed to early thermal manipulation with a temperature of 38 °C at day 5 with no antioxidant supplementation (TC), TC plus vitamin E at 250 mg/kg of feed (TV), TC plus selenium at 0.5 mg/kg of feed (TS) and the combination of TS and TV(TVS). The experiment was laid out in a Completely Randomized Design and data collected were analyzed using SAS (2008). The results showed that TVS broilers had significantly higher (P < 0.05) body weights at the finisher phase than the other treatment groups. The feed conversion ratio of TVS broilers was comparable to the TV group but lower (P < 0.05) than the other treatments. Reduced levels (P < 0.05) of heterophil, lymphocytes and hetrophil and lymphocyte ratio were recorded in the TVS compared to TV, TS and TC broilers. On day 42, the rectal temperature was significantly higher in CC than those in other treatment groups, which were comparable. TVS birds had higher (P < 0.05) weights of spleen, liver and lower abdominal fat than other treatments. The lowest concentration of plasma malondialdehyde and the highest activity of superoxide dismutase and glutathione peroxidase were recorded in TV and TVS birds. The study concluded that the growth performance and oxidative status in broilers were improved by the combination of EATC with supplemental Se and vitamin E (TVS).


Antioxidants , Chickens , Animals , Antioxidants/pharmacology , Antioxidants/metabolism , Chickens/physiology , Diet/veterinary , Dietary Supplements , Stress, Psychological , Vitamin E/pharmacology
...